4行业动态
您的位置: 首页 ->  行业动态 -> 分析贴片二极管产生方向恢复过程的原因

分析贴片二极管产生方向恢复过程的原因


电荷存储效应产生上述现象的原因是由于二极管外加正向电压VF时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴 ,它们都是非平衡少数载流,如下图所示。

  

空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度,离结越远,浓度越小 。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似。
     我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应
  当输入电压突然由+VF变为-VR时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:

在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR;与多数载流子复合。

在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与RL相比可以忽略,所以此时反向电流IR=(VR+VD)/RL。VD表示PN结两端的正向压降,一般 VR>>VD,即 IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR和RL所决定。经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tt,二极管转为截止。
  由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于电荷存储效应引起的,反向恢复时间就是存储电荷消失所需要的时间。
  二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定,而且“开”态有微小的压降V f,“关”态有微小的电流i0。当电压由正向变为反向时,电流并不立刻成为(- i0),而是在一段时间ts 内,反向电流始终很大,二极管并不关断。

经过ts后,反向电流才逐渐变小,再经过tf 时间,二极管的电流才成为(- i0),ts 称为储存时间,tf 称为下降时间。tr= ts+ tf 称为反向恢复时间,以上过程称为反向恢复过程。这实际上是由电荷存储效应引起的,反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短,则二极管在正、反向都可导通,起不到开关作用。

Hello!

平尚电子公众号

微信扫一扫

享一对一咨询